\square

INDIAN SCHOOL MUSCAT SECOND TERM EXAMINATION SCIENCE 086
 TERM -2

Max. Marks: 40

MARKING SCHEME			
$\begin{aligned} & \text { QN.N } \\ & \mathbf{O} \end{aligned}$	VALUE POINTS		MARKS SPLIT UP
1	Gravitational constant (G) Universal gravitational constant is a constant value at any place in the universe. The value of $\mathrm{G}=6.673 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ The unit of G is $\mathrm{Nm}^{2} / \mathrm{kg}^{2}$ Any two differences	Acceleration gravity (g) The nature of the acceleration due to gravity varies from place to place. The value of acceleration due to gravity of the earth is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ and moon is equal to $1.6 \mathrm{~m} / \mathrm{s}^{2}$. The unit of g is $\mathrm{m} / \mathrm{s}^{2}$	1+1
2	a) $\begin{aligned} & \mathrm{F}=\mathrm{Gm}_{1} \mathrm{X} \mathrm{~m}_{2} / \mathrm{d}^{2} \\ & \mathrm{~F}=6.67 \times 10^{-11} \times 90 \times 90 /\left(4.0 \times 10^{-2}\right) \\ & \mathrm{F}=6.67 \times 10^{-11} \times 81 \times 10^{5} / 1.6 \mathrm{~N} \\ & \mathrm{~F}=6.67 \times 81 \times 10^{-6} / 1.6 \mathrm{~N} \\ & \mathrm{~F}=6.67 \times 50.625 \times 10^{-6} \mathrm{~N} \\ & \mathrm{~F}=337.67 \times 10^{-6} \mathrm{~N} \end{aligned}$ b) When a body or object falls towa of earth and without any other for c) $\quad \mathrm{F}=\mathrm{G}\left(\mathrm{m}_{1} \cdot \mathrm{~m}_{2} / \mathrm{d}^{2}\right)$ If $d=3 d$ $\begin{aligned} & \mathrm{F}=\mathrm{G}\left(\mathrm{~m}_{1} \cdot \mathrm{~m}_{2} /(3 \mathrm{~d})^{2}\right) \\ & \mathrm{F}=1 / 9 \mathrm{G} \mathrm{~m}_{1} \cdot \mathrm{~m}_{2} / \mathrm{d}^{2} \end{aligned}$ when the distance is tripled, the gravitat 1/9times.	ds earth due to gravitational force ce acting on it. It is called free fall nal force between two bodies become	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ $1 / 2$ $1 / 2$ $1 / 2$ 1/2 $1 / 2$
3	(i) Atomicity (1) (ii)(a) 7 (b) 6 $(1 / 2+1 / 2)$		(1+1)

	$\text { d) } \begin{aligned} & \text { Weight }=\mathrm{mg}=12 \mathrm{kN}=12000 \mathrm{~N} \\ & \text { Mass }=12000 / 10=1200 \mathrm{~kg} \\ & \begin{aligned} \mathrm{V}=40 \mathrm{~m} / \mathrm{s} \end{aligned} \\ & \begin{aligned} \mathrm{K} . \mathrm{E} & =1 / 2 \mathrm{mv}^{2} \\ & =1 / 2 \times 1200 \times 40 \times 40 \\ & =960000 \mathrm{~J} \\ & =960 \mathrm{~kJ} \end{aligned} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
10	There are specific organs targeted by the pathogens once they enter the host body. This depends upon the way through which they enter the host body. For example, if they enter through the respiratory system, lungs are the organ which will get infected. Loose motion, vomiting, nausea and stomachache (any two symptoms) $(1 / 2 \times 2=1 \text { mark })$	$\begin{aligned} & \hline 2+1=3 \\ & \text { marks } \end{aligned}$
11	Becoming protected against a disease through vaccination or attaining immunity against a particular disease through the administration of vaccines is called immunization. a. BCG vaccine b. DPT (any other) $(1 / 2 \times 2=1 \text { mark })$	$\begin{aligned} & 2+1=3 \\ & \text { marks } \end{aligned}$
12	. (i) Definition: Cation with example $(1 / 2+1 / 2) \quad$ Anion with example $(1 / 2+1 / 2)$ (ii) Definition (1) Each differences (1)	$(2+1)$ (or) $(1+1+1)$
13	Neil's Bohr Model (2) Bohr Model of Sodium Atom(1)	(2+1)
14	a) At point C, maximum energy - Potential energy At point A, maximum energy - Kinetic energy b) The law of conservation of energy states that energy can neither be created nor destroyed but only transformed from one form to another. c) Microphone - Sound energy \longrightarrow electrical energy Electric Motor-Electrical $\underset{\text { ergy }}{\rightarrow}$ mechanical energy or	1 1 2 1 1
15	(a) 23:6:24 (1) (b) (i) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (ii) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(1 / 2+1 / 2)$ (c) (i) Oxygen Isotopes (1) (ii) 90% and $10 \% \quad(1 / 2+1 / 2)$ (or) Formula $\quad(1 / 2)$ Substitution (1/2) Result: 75\% and 25% (1)	(1+1+2)

